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Abstract. We investigate the equilibrium behaviour of charged polymers of finite length 
in a Debye-screened potential between two parallel charged walls. For the polymer we 
take the continuum approximation to calculate the spectrum of eigenfunctions for the 
partition function. For finite but long polymers only the lowest two terms in this expansion 
contribute to first order to the configurational sum, corresponding to a symmetrical and 
an antisymmetrical solution. Within this formalism we calculate the monomer density 
distribution for finite strands of polymer attached to one or both surfaces (tails, loops and 
bridges) as well as for polymers free in solution. For the free polymer we also find the 
free energy as a function of the distance between the plates for several values of the 
interaction parameters, as well as the effective interaction between the plates due to the 
polyions. This shows that there can exist an equilibrium separation distance between 
colloidal particles due to the interactions with charged polymers in solution. This mechan- 
ism may also explain the formation of rouleaux for red blood cells. 

1. Introduction 

In this paper we will discuss the equilibrium density distribution of polyelectrolytes 
near red blood cells or charged colloidal particles when two of these come close 
together. As a simplified model we consider two parallel planes with, between the 
plates, an ionic fluid containing in addition to the small salt ions a small amount of 
polyelectrolyte. This can improve our understanding of the behaviour of polyelec- 
trolytes in the small gap between two cells or colloidal particles when these are very 
close. When the polymer binds to the wall of the particles it can form bridges across 
the gap and thereby give rise to a very strong binding force between the particles. This 
is one mechanism to explain the formation of so-called rouleaux of red blood cells 
(Wiegel and Perelson 1981). For short-range interactions of the monomers with the 
surface of the particles other types of models can be considered, like the lattice model 
we have investigated earlier (van Opheusden er al 1985). In this model also a strong 
binding can occur. 

2. The Poisson-Boltzmann equation in one dimension 

For the Debye screened electrostatic field of a charged colloidal particle or a red blood 
cell very close to its surface it seems justified to consider a one-dimensional approxima- 
tion. The surface is modelled as a single charged wall at x = 0, extending to infinity 
in the y and z directions. In this particular case the full non-linear Poisson-Boltzmann 
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equation can be solved (Lampert and Crandall 1980, Verwey and Overbeek 1948). 
The difference between this solution and that of the linearised equations is that there 
is somewhat stronger screening very close to the wall, while at larger distances the 
effects of non-linearity diminish rapidly. In principle there is no problem in investi- 
gating the behaviour of the polyelectrolytes in the potential that is the solution of the 
non-linear Poisson-Boltzmann equation. This term, when included in the equation 
for the partition function of the polyions, only plays the role of an external potential 
and the resulting equation remains completely linear. The only point is that the equation 
cannot simply be transformed into one for which solutions can be expressed in terms 
of elementary functions, as is the case for the formalism to be described next. One 
would have to rely instead on a numerical solution of the equations under consideration. 
One should note, moreover, that the screening effect is caused by the small ions, the 
polyions themselves not influencing the potential field. We will hence neglect all 
non-linear effects and consider the general solution of the linearised equation 

V(X) = A exp(-kDX) + B eXp(kDX). (1) 

When the wall is held at a constant potential V, the bounded solution is 

V(x) = v, exp(-k,x). (2) 

We want to calculate the field in the gap between two colloidal particles. Therefore 
we introduce a second wall, which is parallel to the first, and at a distance 6 such that 
the potential V, is effectively screened, i.e. 6 >> k;'. Raising the potential on the second 
wall to V, will then result in a redistribution of the ions that gives the same screening 
effect. The potential between two walls prepared in this way, located at positions x = d 
and x = -d is given by 

Cosh( k&) 
V(x) = v, 

cosh( kDd)'  (3) 

To illustrate the validity of this approximation consider two spheres of radius R, 
far apart from each other, and each with a surface potential V,. The Debye screened 
field of a single sphere at the orgin is 

In terms of the distance S to the surface of the sphere, S = r - R, equation (4) becomes 

V ( R + S ) =  v o e x p ( - k ~ S ) R / ( R + 8 ) .  ( 5 )  

Thus close to the surface the potential is approximated by that of the flat wall (equation 
(2)), as could be expected. If two spheres are placed along the x axis, with their 
surfaces at x = d and x = -d, respectively, the potential in the gap between the spheres 
along the x axis becomes 

v(X)=2vo eXp(-kDd) COSh(kDX) ( d  << R )  ( 6 )  

which is essentially the same solution as equation (3). This solution follows from a 
simple superposition of the potentials from both walls, which is allowed in the linearised 
theory. Note that we have assumed that the charge distribution on the colloidal particle 
itself does not change because of the other particle. 
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3. Small concentration of polyelectrolytes 

When a small number of polyelectrolyte chain molecules, with charge opposite to the 
colloidal particles, is added to the solution these chains will tend to adhere to the 
particles because of the attractive potential, while on the other hand the heat motion 
tends to move the chains away from the surface. In this section we calculate the 
partition function of a single, long but finite chain between two colloidal charged 
particles. For the adsorption to a single colloidal particle a continuous model has 
been used by Wiegel (1977). We will consider the effect of a second particle within 
this model. 

We assume that the amount of polyelectrolyte is so small that it will not affect the 
charge distribution in the solution. Because we consider this low-density limit we may 
also ignore excluded volume effects between the polymers. The potential between the 
spheres is taken to be as given in equation (3). For chains of length N the partition 
function G(ro ,  I N ,  N )  in the gap between the particles is the solution of the diffusion- 
like equation (Wiegel 1975, Freed 1972) 

(7) 
1 2  2 [a/aN-al V +PV(r)]G(ro,  r N ,  N ) = 0 .  

Here ro and rN are the positions of the particles at the two ends of the chain and 1 is 
the length of one monomeric unit. Note again that the potential is not influenced by 
the charges on the polyelectrolytes themselves but only by the small counterions in 
solution. In particular, this implies that there is no extra swelling of the polyions, 
other than possibly a somewhat larger effective Kuhn length 1. For the dilute solution 
of polyelectrolytes we neglect the small non-linearities this would produce in (7), which 
would otherwise have to be solved in a self-consistent fashion. For the parallel-plate 
geometry, equation (7) separates in Euclidean coordinates. The solution is a formal 
expansion in terms of eigenfunctions +, for the x coordinates, and normalised 
Gaussians n ( 5 )  in the y and z directions 

CO 

G ( ~ o ,  r ~ ,  N )  = ~ ( Y N  - Y O ) ~ ( Z N  - ZO) c +,(xN)+~(xo) exp(-A,N) ( 8 a )  
0 

where 

n ( 5 )  = ( ~ T ( T ) - ” ~  exp(-t2/a2).  ( 8 b )  
The +, are the solutions of 

We must solve this equation in order to find the spectrum +, with corresponding A,, 
using expression (3) for the potential V(x). 

4. Debye screened potential between two walls 

The problem of the adsorption of polyelectrolyte to a single wall with a Debye screened 
potential has been solved before (Wiegel 1977). For the single wall the potential is of 
the form (2) 

V(x) = - V, exp(-k,x) (10) 
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where we have introduced the extra minus sign to have an attractive potential, while 
the parameter Vo remains positive. It was shown by Wiegel (1977) that a bound state 
exists provided 

24p VQ/ k&12 > j ; , ,  (11) 

with j , ,  = 2.4048 . . . the first real zero of the Bessel function Jo. This solution can be 
found by considering equation (9) with the potential as given in (10) and making the 
substitution 

S ( X )  = (24pVo/ kL12)-1’2 eXp(-$kDX) So eXp(-$kDX). (12) 

(s2d2/ds2 + sd/ds  + s2+ A n ) f n ( s )  = 0 (13) 

A,, = 24h,pVQ/k&12. (14) 

One then finds the Bessel equation 

with 

As boundary conditions we take + ( O )  = 0 and +(L) = 0 for some finite value of L, and 
consider the limiting solution as L + CO. If we now take the potential of both walls, 
equation (3), but with x shifted over L, such that the first wall lies at x = 0 and the 
second at x = 2L, we have 

For kD<< L, i.e. when the Debye screening length is small compared to the gap width, 
some simplifications are possible. The prefactor in this case is nearly equal to Vo, and 
the substitution (12) leads to an equation similar to equation (13): 

[s’ d2/ds2+ sd/ds  + s2+  S A  eXp(-2k&)/S2+ An]fn(S) = 0. (16) 

For x < L the extra term can be considered to be a small perturbation, so we may use 
the solutions of the single-wall problem, though one must be careful with the boundary 
conditions. For the single wall the boundary condition at x = L is f ( s L )  = 0, because 
one wants the solution to vanish when L +  CO. Here we have used the shorthand notation 

sL=s0exp(-k,L). (17) 

The effect of the second wall is that the potential for x > L is exactly the mirror image 
of that for x < L. Hence the solutions of the eigenfunction equation will also have 
this symmetry, but there may be a parity change. In other words, next to the antisym- 
metric solutions, which have a nodal point at x = L, there exist symmetric solutions. 
In both cases the boundary condition at the impenetrable wall is a vanishing partition 
function, so we have 

L(S0)  = 0 (df,/ds)s=sL = 0 (18a) 

fa(S0) = 0 fa (sL)  = 0 (186) 

f(s) = C,J”(s) + C2J-,(s) (19) 

for the symmetric solutions and 

for the antisymmetric solutions. The general solution of the unperturbed equation is 
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with A, = - v2 ,  and J,, the Bessel function of order v. Substitution of the general 
solution into the boundary equation for the antisymmetric solution gives the equation 

J ,  ( s o ) / J -  (so) = Jv (sL)/’J- ~ ( s L ) .  (20) 

In the limit L +  CO, that of the single wall, the right-hand side of this equation vanishes 
because sL + 0 and thus J v ( s L )  + 0 for positive v. The boundary conditions for the 
symmetric solutions yield the relation 

As is to be expected for the case sL+O both equations become equivalent. Strictly 
speaking the general solution is not valid at integer values of v, where J ,  and J - ,  are 
linearly dependent and other types of Bessel functions should be used. The distinction 
is not really important for the generic case of non-integer v. As stated for the single 
wall, the right-hand side vanishes and bound-state solutions exist only when so > j 0 , ] ,  
the first zero of J o .  For any positive v the first zero is increasing monotonically with 
v (Jahnke et a1 1966). 

Of course one can solve equations (20) and (21) numerically. However, as we 
consider the case in which the two walls are not too close, we can do better. At least 
for the lowest bound state, when so is between j0,]  and j0,* = 5.135 62 . . . , we know that 
sL is also small. Hence we may use the asymptotic formula for the Bessel function 
with small argument (Abramowitz and Stegun 1965) 

~ , ( ~ ~ ) = ( ( t ~ ~ ) ~ / r ( i +  .). (22) 

Substituting this in (20) and (21), and using expression (17) for sL, one obtains 

with the plus sign for the antisymmetric solutions and the minus sign for the symmetric 
ones. In the limit L + 00 the single solution is v = vo and for large but finite L this 
level splits up into a doublet at v, = vof A V  with 

The splitting is important because it gives an indication about the relative importance 
of the antisymmetric solution in the eigenfunction expansion (8), as the eigenvalues 
are still given by A = -v2 for both types. The relative weight of the antisymmetric 
solution for a polymer of length N is approximately exp(-4NvoAv). In the limit of 
very long chains, N >> 1 ,  the partition function is dominated by the lowest eigenvalue 
A, = -vi. For the double well we have to be a bit more careful. The lowest eigenvalue 
always corresponds to a symmetric solution, but the lowest antisymmetric solution has 
an eigenvalue relatively close to this one. Consequently, for quite large N, regardless 
of the symmetry of the problem itself, the solutions can be quite asymmetric, corre- 
sponding to a considerably higher concentration of polymer in one of the wells as 
compared to the other. 
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5. Monomer density between two walls 

By solving (20) and (21) we obtain the ground state and the first excited state of (13), 
with boundary conditions as given by (18a) and (18b). For the case of a long but 
finite polyelectrolyte these two solutions give the lowest two terms in the eigenfunction 
expansion for the partition function. We may neglect higher-order terms in this 
expansion because the corresponding eigenvalues A, are separated from the lowest 
two by a relatively large energy gap. For infinite chain length the parition function is 
completely dominated by the ground-state solution. 

In order to determine the density of polymer material at a certain point x between 
the walls one has to consider all possible configurations of a polyelectrolyte chain 
which pass through this point. The number of configurations with endpoints at xo and 
xN, and the nth monomer held fixed at point x, is proportional to the three-point 
function G3(x0, x, xN, n, N ) .  As we consider a chain of the Markov type, without 
excluded volume effects, we can take this single chain to consist of two shorter chains, 
or two tails fixed together at position x. Both tails assume configurations according 
to the partition function of a polyelectrolyte of that specific length. Hence the density 
for all monomers becomes 

with C a normalisation constant such that 

d x p ( x )  = 1. 

Because we have a linear theory any overall constant can be used as a normalisation 
for the density function. 

It is assumed implicitly in this equation that the endpoints of the polymer can 
move freely through the potential field within the gap, and all possible end positions 
have to be considered. For polymers attached to the surface with one end, the 
integration over xo in equation (25) is not appropriate, but instead one should consider 
the limiting behaviour when the endpoint approaches the surface. In this case 

An analogous expression holds for polymer loops, which are bound on both ends. 
Strictly speaking, the approximation of G by taking only the lower states is valid 

only for large polymer length, i.e. when the monomer considered is far from both ends. 
For long polymer chains the end effects are not very important, and one can use only 
the lowest, or two lowest terms, in the series expansion for the partition function 

where the &(x)  are orthonormal eigenfunctions when written in the s language, with 
a corresponding norm of the linear equation (13). In the case of ground-state dominance 
all end effects become irrelevant and both (25) and (27) reduce to 

P(X) = +&). (29) 
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When there is no ground-state dominance matters become more complicated, even 
if one only considers the effect of the first excited state. In this case we have the 
ground-state doublet, formed by the symmetric solution $, and the antisymmetric 
solution 4,, which has a slightly higher eigenvalue. The difference AA = A,- A, is small 
compared to the difference between A, and the first excited symmetric state. The 
partition function becomes 

G(x1, ~ 2 ,  n )  = $s(x1)$s(x2)+ $a(xl)$a(xd ex~(-nAA) (30) 
where an overall constant exp(-A,n) is neglected. When this is substituted in (25) the 
summation over n can be performed, and the general result is, for large N and small 
AA, 

Here we have not explicitly written the x dependence of the functions i,bs and 4,. Once 
these functions are known it is straightforward to perform the integrations in this 
equation. In fact we do not need the functions explicitly, because the integral over 
$, is always identically zero. 

For the free polymer chain, equation (24) gives immediately 

Pfree(X) = $%(x) (32) 
i.e. we get the same result as for ground-state dominance. For the polymer with both 
ends free in this order there is no effect on the density distribution between the particles. 
Higher-order terms in the eigenfunction expansion have to be included to find a 
deviation from the ground-state behaviour for shorter polymers. When one or both 
ends of the polymer are attached to the surface we have to be a little bit careful. As 
the functions $s and 4, vanish at the surface we must consider the limiting behaviour 
as described for (27). For a polymer chain with one end attached to one surface and 
the other end attached to the other surface, forming a bridge between the particles, 
we have $,(x0+ 6) = (Irs(xN - 6) = SE and $,(x,,+ 6)  = -$ , (xN - 6) = AE, for x,, = 0 and 
x N  = 2L, with E, 6 + 0. In other words we define S = +:(x0) and A = $g(xo). The density 
distribution for a bridge becomes 

hr idge(x)  = [S2$I-A2$: exp(-NAA)]/[S2-A2 exp(-NAA)] (33) 
which does show some effect of the antisymmetric solution. Relative to the solution 
for the finite chain with both ends free the density in the middle between the walls is 
increased. This comes from the fact that for the free chain many configurations exist 
in which the full chain is in one of the potential wells, and no monomer density in 
the centre is generated. All these configurations are excluded for the bridge model. 
Hence, by forcing the chain to cross from one wall to the other the relative abundance 
of this type of configuration in the total configuration sum is enhanced, and the density 
in the centre is increased. 

When only one end is attached to a surface we have a polymer tail 

Ptaii(X) = {WL: + A$s$a[ 1 - exp( - N A A )I /  N AA }/ S (34) 
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and for both ends attached to the same surface, a polymer loop, we find 

+ 2AS+,+J 1 - exp(-NAA)]/NAA}/[S’+ A’ exp( - N A A ) ] .  ( 3 5 )  

Note that the asymmetry for tails is approximately half the effect found for loops, as 
can be expected when one end is free to cross over to the other surface. When one 
considers the case in which there are polymer tails on both surfaces the asymmetry in 
(34) cancels completely, and the result for ground-state dominance is recovered, at 
least to this order. This is in accordance with the remark made above about the increase 
in density for polymer bridges near the centre; for polymer tails no such effect should 
be expected. 

In figure 1 we plot the monomer density of bridges between the walls for a number 
of different values of the polymer length. One observes that for decreasing N the 
density in the centre between the particles or cells increases, while it decreases 
accordingly near the walls. Because the symmetric solution +, and the antisymmetric 
solution +, that enter the equation for the monomer density of bridges (equation (33)) 
do not depend on the polymer length, all curves trivially pass through the point where 
+, = Gs. In figure 2 have we plotted the density for tails, polyelectrolyte chains fixed 
to the wall at x = 0. For increasing chain length one observes a decreasing asymmetry 
of the monomer density between the walls. For the case of infinite chain length, as 
pointed out, the density profiles of tails and bridges are, of course, identical. 

In figures 3 and 4 one finds the monomer density of the infinite chain for various 
values of the depth of the potential well, or rather the parameter so as defined in 
equation (12), and the distance between the walls in reduced units kDL, respectively. 
For decreasing values of so one observes an increase of the density in the centre between 

0 0.5 2.0 1.5 
X l L  

.O 

Figure 1. Monomer density between colloidal particles or cells with a Debye screened 
potential for bridges of various length. The polymers are fixed with one end to one particle, 
at x = 0, while the other end is fixed to the surface at the other particle at x/  L = 2. The 
values of the parameters as used in the text are so = 3, k,L = 10 and the different lengths 
are given by N = 10, 15, 20, 30 and cc, the limit of infinite chain length. One observes that 
for longer chains the polymer material is more confined in the potential wells near the 
wall, while the density in the centre is largest for short chains, giving rise to a fairly flat 
concentration profile. 
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Y 
0 0.5 1.0 1.5 

x l f  

0 

Figure 2. Monomer density between colloidal particles or cells with a Debye screened 
potential for tails of various length. The polymers are fixed with one end to the impenetrable 
wall at x = 0, while the other end dangles free into solution. The values of the parameters 
as used in the text are so = 3, k,L = 10 and the different lengths are given by N = 10, 20, 
40,80 and CO. In the limit of infinite chain length all end effects disappear and there is no 
distinction whatsoever between tails, bridges or free polymer chains. One observes that 
for shorter chains the polymer material is more confined in the potential well near the left 
wall to which the tails are attached, while for the long chains the concentration profile is 
more symmetrical. 

.Q 
xlL 

Figure 3. Monomer density between the walls in the limit of infinite chain length ( N  =CO) 

for various values of the depth of the potential well, or rather the parameter so, which is 
a combination of several physical variables (equation (12)). The values are so = 2.5, 2.75, 
3.0, 3.5 and 4.0 and the particle distance is fixed at k,L = 10. For small values of so the 
monomer density in the centre is quite large. The flat profile is caused by the fact that, 
for shallow wells, bridges, i.e. configurations with strands of polymer material crossing 
from one well to the other, become more abundant. For larger values of so the monomers 
are confined to the wells, with large strands in a single well, and only few bridges. Hence 
the density in the centre drops, while the maximum of the concentration curve shifts 
towards the walls. 
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x l L  

Figure 4. Monomer density between the walls in the limit of infinite chain length ( N  =CO)  

for various values of the distance between the cells or colloidal particles. The values as 
used are k,L = 2,  5, 10, 15 and 20, while the value of so is fixed at so = 3. For small values 
of k,L the monomer density in the centre is large. Because the particles are very close, 
bridges are common. In fact, for the shortest distance k,L = 2, the effect of the electrostatic 
attraction gives rise to only a very minor broadening of the density profile as compared 
to that of an infinite polymer chain confined between two hard walls. For larger values 
of k,L the monomers are concentrated near the walls and only an incidental bridge is 
formed. The shift of the maximum of the concentration curve towards the walls is caused 
mainly by the scaling, the value of k,L increases, but the width of the potential well 
remains fixed at about x = l /k ,L .  

-0.5- 

a -1.0 

- 1.5 

- 2.0 

Figure 5. The free energy per monomer as a function of the distance between the two 
charged colloidal particles or biological cells for diff erent values of the adsorption parameter 
so (so = 3.0, 3.5, 4,O). We show only the thermodynamic limit of infinite chain length as 
the correction due to finite chain length is only very small. One observes a minimum of 
the free energy corresponding to an equilibrium distance between the walls due to the 
effect of the polyelectrolytes. This minimum shifts towards a smaller equilibrium separation 
distance at larger values of so. The increasing depth of the effective potential gives rise to 
a stronger binding between the particles or cells, and hence a more stable association. 
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the walls as the polymer chain starts to form an increasing number or bridges, i.e. 
strands of polymer which cross from one potential well to the other. Also a shift of 
the maximum of the curves away from the wall can be observed corresponding to a 
shift of the maximum of the Bessel function for decreasing values of v,. For the lowest 
value considered, so = 2.5, only slightly above the critical value of j , ,  (equation (1 l ) ) ,  
v, is almost zero, but positive, and a bound-state solution is found. The density between 
the walls for this solution is almost completely constant. The same effects can be 
observed for a decreasing distance between the walls. The shift of the concentration 
maximum, however, is mainly due to the scaling of the abscissa of the figures, where 
we have plotted x/kDL. Apart from this somewhat artificial effect there is also a real 
shift in the value of vs, as in figure 3, but that is much too small to be observable (see 
figure 5). For small particle separation the monomer density again becomes very flat, 
because the bridges become more abundant. 

6. Thermodynamic quantities 

In order to find the thermodynamic quantities of the system we have to evaluate the 
full partition function 

z = dxo dXN G(&, XN, N ) .  ~ (36) 

For a chain with free ends, in our approximation only the ground state contributes to 
the partition function; because of the antisymmetry of the first excited state. That 
means that the difference between the finite and infinite chain only appears in the 
second excited state, which we neglect. One may also observe that this is the partition 
function for a single chain only. But because the end effects are unimportant, one 
may think of the separate chains as being linked together at their ends. The total 
monomer density enters the definition of Z only through the normalisation condition 
equation (29). The result is 

from which we can easily obtain the thermodynamic quantities of interest. 
The free energy per monomer (f) is given by 

fp = -log(Z)/N z A,  (38) 
with p-' = kBT as before, and the pressure due to the presence of the polyelectrolytes 
is given by 

p = -af/a(2L) = -aAs/2paL (39) 
where 2L is the distance between the particles. The average internal energy per 
monomer is derived from the density as given in the previous section, 

up = I p(x)  V(x) dx = +:(x) V(x) dx I (40) 

and the entropy per monomer is given directly by the relation between the other 
thermodynamic parameters 

S/ kg = U p  - ap = $ f ( X )  v ( X )  dx  - A,. (41) 
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In figure 5 we plot the free energy of an infinitely long polymer chain between two 
walls as a function of the distance between the walls. One observes that the free energy 
reaches a minimum, corresponding to an equilibrium distance between the particles. 
At the equilibrium distance the pressure, which is plotted in figure 6 ,  is identically 
zero. This is the main difference between this model, with a continuous potential 
between the monomer and the walls, and a short-range interaction as for instance for 
the lattice model we considered in an earlier paper (van Opheusden et al 1985). For 
short-range interactions the effective force between the plates due the polyions does 
not give rise to an equilibrium association distance. In the calculation of the free 
energy as well as the effective pressure on the plates we have taken into account only 
the effects of the polyelectrolyte material. At large distances this force is always 
attractive when there are bound states for the single-wall potential well, i.e. when 
inequality (1 1) is satisfied. When the particles approach each other the bound-state 
solutions disappear, and only the free solutions remain. We have not treated these 
solutions for the double Debye potential, but it suffices to mention that one always 
obtains a repulsive force due to the polyelectrolytes. 

k d  

Figure 6. The pressure between the cells or colloidal particles as a function of their distance 
due to the presence of the polyelectrolyte material. For large distances the force is always 
attractive, and if the density of polyelectrolyte is large enough to overcome the direct 
electrostatic repulsion between the cells this gives rise to clustering or coagulation. One 
may note that for small distances the attractive force increases as so increases, giving a 
more stable association, but for large distances the opposite is the case. If the particles 
are far apart only very few bridges of polyelectrolyte strand are formed and the coils are 
mainly confined to the potential well near the walls. Hence there is not much effective 
interaction between the walls and the attraction diminishes. 

Apart from the pressure due to the polymer chains there is also the direct electrostatic 
interaction between colloidal particles or red blood cells. This interaction is screened 
by the ions in the solvent, but still gives rise to a repulsive effect at all distances, as 
the particles or cells have equal charge. Whether or not coagulation due to bridging 
of polyelectrolytes will occur depends on the competition between these two opposing 
forces. According to our theory, coagulation can always be inferred by adding more 
polyelectrolyte material, because the force which we have calculated is the force per 
monomer and the theory is completely linear. When, on the other hand, the monomer 
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density becomes too large it is not appropriate any more to neglect the excluded volume 
effects of the polymer chains. It is not clear which approach in that case can lead to. 
results like the one described in this paper. It is possible for a simple square well to 
find the partition sum of an infinitely long polymer (Dolan and Edwards 1974, 1975). 
In the case of ground-state dominance one obtains a non-linear diffusion equation 
(Freed 1972) which can be solved exactly (Gerber and Moore 1977). For other 
potentials and, more interesting in the context of this paper, for polymers of finite 
length, the problem remains unsolved. The excluded volume will always give rise to 
a repulsive force and hence a smaller total effective attraction between the plates. 
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